
Monte Carlo study of catenated ring polymers 

Andrzej Sikorski 
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland 
(Received 5 January 1994; revised 29 April 1994) 

Monte Carlo simulations of isolated ring polymers and pairs of catenated ring polymers were done on a 
simple cubic lattice. Differences in static and dynamic properties of these systems are presented and discussed. 
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Many experimental results concerning isolated ring 
polymers and pairs of catenated ring polymers have 
recently been published 1-7. However, the theory of cyclic 
macromolecules is still incomplete 1'2. In order to develop 
the theory of properties of concentrated ring systems and 
melts 8-t°, we studied dilute systems containing cyclic 
polymers. 

There is discussion about the properties of ring 
polymers, and the presence of topological constraints, 
such as knots and/or catenated chains, is suspected in 
some cases. The influence of self-knotting on the 
properties of isolated cyclic chains and melts was recently 
studied 8"0 by means of the Monte Carlo method. We 
employed a similar Monte Carlo method to study the 
influence of catenation on the properties of dilute ring 
systems. 

Dynamic Monte Carlo simulations of catenated 
polymer ring systems were performed. Model ring 
macromolecules were confined to a simple cubic lattice. 
The procedures of growth, equilibration and simulation 
have been described in detail elsewhere 8'9. Basically, both 
rings forming a catenated pair are simultaneously 
subjected to growth and equilibration. The initial ring 
contains eight beads. The topology of the system is not 
changed during this process. A pair of rings was then 
simulated by the dynamic Monte Carlo method. A 
classical set of local micromodifications was used s'x 1: (i) 
two-bond kink motions; (ii) three-bond kink motions; 
and (iii) three-bond crankshaft motions. A time unit 
consisted of an attempt of all three motions per chain 
bead, on average. Changes of conformation were accepted, 
accounting for the excluded volume and topological 
restrictions. No long-range interactions were introduced 
(i.e. all systems under consideration are athermal). The 
topology of the system was preserved during a simulation 
run because the set of local motions preserves the bond 
cutting. 

We studied ring chains of various lengths, with number 
of beads N = I 0, 20, 40, 60, 80, 100, 200, 400 and 800, in 
a Monte Carlo box with edges changing from 10 to 100 
(the edge should be a few times greater than the radius 
of gyration). Periodic boundary conditions were used. A 
pair of catenated rings consists of two chains of identical 
length N. In addition to catenanes we simulated a single 
isolated polymer ring with length N in the same range 
in order to compare properties with this simple system. 
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Static properties of a polymer chain are usually 
described by the mean-square diameter (d 2) (mean 
square distance between beads 1 and N/2) and the 
mean-square radius of gyration ($2). Both these para- 
meters should exhibit scaling behaviour. In the case of the 
pair of catenated rings we observed the following scaling 
relations: <d2>o,~ N H 74+0.003 and <S2>c,,~ N ''18, ± 0.003. 
These scalings are valid for sufficiently long chains 
(N>60). Crude extrapolation of the ratio <d2>j<S2>c 
leads to the value of 0.30 in the limit of an infinite chain. 
For a single uncatenated chain <d2>i~N Hs°-+°'°°8 
and ( S 2 ) i ~ N  1'186±0"002 (for N>60)  and their ratio 
(d2)fl(S2) i approaches the value of 0.30 (for chain 
lengths N > 60). 

Simulation results concerning the static properties of 
all systems under consideration are presented in Table I. 
The size of catenated rings is distorted by a topological 
constraint, catenation. The size of a catenated ring 
polymer is greater than a single ring polymer because 
the presence of the topological constraint (catenation) 
increases the excluded volume. After a short induction 
period the relative difference in size does not change a 
lot with increasing chain length ((d2)i/(d2)¢=0.84 and 
($2)i/($2)¢=0.88 for N =  800), but one can expect that 
in the limit of infinite chain the dimensions and shape of 
the catenated polymer ring are the same as those of a 
single ring. A similar effect was observed in the simulation 
of isolated self-knotted rings 8'9. 

Table 1 Static properties of the ring systems (subscripts c and i 
represent catenated ring polymer and isolated ring polymer, respectively) 

N '~ (dZ)= ($2)c (S2>¢/(dZ)c (d2>i (S2)i (S2)i/(d2)i 

10 6.79 1.67 0.260 5.01 1.43 0.285 
20 13.77 3.88 0.282 11.56 3.31 0.287 
40 30.21 8.72 0.289 24.27 7.47 0.308 
60 48.53 13.96 0.288 40.52 12.26 0.303 
80 67.10 19.71 0.295 58.46 17.33 0.296 

100 86.22 25.49 0.296 74.73 22.51 0.301 
200 195.4 57.65 0.295 175.1 50.98 0.291 
400 4 4 4 . 9  130 .5  0.293 382.3 117.1  0.307 
800 1005 299.7 0.298 872.0 2 6 4 . 8  0.304 

N denotes length of one ring chain. A catenated pair consists of two 
chains each of length N 
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Table 2 Dynamic properties of the ring systems (subscripts c and i 
represent catenated ring polymer and isolated ring polymer, respectively) 

N a D e × 10  3 (za) c D i  × 10  3 (To) i 

10 1.701 464.3 53.9 4.042 
20 8.910 73.23 30.0 19.98 
40 8.210 254.0 15.97 101.8 
60 5.364 491.0 10.06 214.4 
80 4.229 924.9 7.759 447.6 

100 3.335 1267 6.212 698.0 
200 1.940 5013 3.148 2761 
400 1.035 24 594 1.555 10 598 
800 0.559 109 840 0.796 44 325 

a N denotes length of one ring chain. A catenated pair consists of two 
chains each of length N 

These results compare well with other data. According 
to off-lattice Monte Carlo simulations of an isolated, 
freely jointed ring polymer 12, ( d  2)  and ( $ 2 ) ~ N 1 " 1 8 ;  

their ratio is close to 0.30 in the range of N from 80 to 
300 and approaches a value of 0.293 for the infinite 
chain. Monte Carlo simulations of a model cyclic chain 
confined to a diamond lattice ~a lead to the scaling law 
( S 2 ) ~ N  TM. The exponents obtained by Reiter ~* in 
Monte Carlo simulations of cyclic chains on cubic lattice 
(using a different algorithm) were 1.174 and 1.194 for 
( d  2)  and (S 2) respectively. Experiments concerning 
cyclic polystyrene in toluene 3 give the scaling relation 
(S 2) ~, N 1.~ 3 for the concentration extrapolated to zero. 

The dynamic properties of ring polymers are presented 
in terms of the diffusion constant D and the longest 
relaxation time Zd. The diffusion constant was calcu- 
lated from the centre-of-mass mean-square displacement 
Ycm(t) = ( [ - rcm(t) -  rcm(0)]2), where rem(t ) is the centre-of- 
mass vector at time t, according to Einstein's formula 
D = g~m(t)/6t. Calculations of the diffusion constant were 
made in a similar way as for linear chains s, for 
displacements greater than 2<S 2) (for times greater 
than the longest relaxation time), which corresponds to 
free diffusive motion. The longest relaxation time rd 
can be extracted from the diameter autocorrelation 
function gd = ( d ( t ) ' d ( O ) ) / ( d 2 )  • As usual we assumed that 
gd~exp(-- t /Zd).  The fit was made in the window 
0.75<gd<0.25, where gd(t) was linear for all systems 
under consideration. Results concerning the dynamic 
properties of ring polymer systems are presented in 
Table 2. 

In the case of the isolated ring polyrner, the diffusion 
constant D i obeys the scaling law D i ~ N  -° '99+0"01 for 
all longer chains (N > 60). This can be seen in Figure 1 
where the diffusion constant Di is plotted versus number 
of segments in a chain N in a log-log plot. In the case 
of the pair of catenated rings, the diffusion constant De 
increases for chains with N < 40. This is an artefact caused 
by the lattice approximation (for N = 8  no motion is 
allowed and De = 0). A similar phenomenon was observed 
in the case of self-knotted ring polymers simulated on 
the same lattice and by the same method s'9. For  longer 
chains (N>60),  D e scales as N -°'s7-+°°1. 

Analogous behaviour was observed for the longest 
relaxation times. The procedure for calculation of the 
relaxation time z d was described above. Figure 2 presents 
the longest relaxation times r d versus the number of 
segments N in a log-log plot. For  the catenated pair of 
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Figure 1 Log-log plot of diffusion constant D versus the number of 
segments in the ring polymer chain N: O, pair of catenated rings; O, 
single ring chain 
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Figure 2 Log-log plot of the longest relaxation time z d versus  the 
number of segments of the ring polymer chain N: ©, pair of catenated 
rings; 0 ,  single ring chain 

rings rd decreases with increasing chain length for short 
chains. This effect is connected with the lattice restric- 
tions, as discussed above. For  longer chains (N > 60) it 
scales as N 2"°2-+°'°3. For  a single ring the scaling 
exponent is 2.08+0.04. The ratio DJDj increases with 
increasing chain length, approaching a value of 0.70 for 
N = 800. The ratio r~rc does not change monotonically; 
for the longest chain its value is 0.40. 

According to experiments, D scales approximately as 
N - o. 5 for polystyrene and polydimethylsiloxane rings 1.2. 
This value is not close to the Rouse exponent because 
of the presence of hydrodynamic interactions in real 
solutions. 
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This work could easily be extended to the simulation 
of melts containing ring polymers, ring and linear 
polymers with (and without) self-knotting and catenation. 
We hope it will result in a good  theory of  polymer  melt 
dynamics. 
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